Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38398542

ABSTRACT

This research studies the influence of the addition of defatted press cakes (from the production of hazelnut, camelina, pumpkin, and hemp seed oil) on nutritionally important components: fibre, resistant starch, polyphenols, hydroxymethylfurfural (HMF), and acrylamide in directly and indirectly expanded snacks. The amounts of press cakes added to corn grits were 3, 6, and 9%. Extrusion was carried out in a laboratory single-screw extruder. For indirectly expanded products (SCFX), supercritical CO2 was injected during extrusion, and secondary expansion was completed in the microwave oven. The type and content of press cake, as well as the type of product, significantly influenced total polyphenol content and antioxidant activity. Press cakes increased the contents of both soluble and insoluble fibre (from 1.94% d. m. and 1.28% d. m. for extrudates without press cakes up to 3.17% d. m. and 6.94% d. m. for SCFX extrudates with press cakes, respectively), and resistant starch was not markedly influenced by their addition. The influence of the content of press cake on HMF was not significant, whereas the type of cake and the type of extrusion influenced HMF significantly. In a raw mixture of corn grits with 3% of pumpkin press cake, HMF was below the limit of detection, and the highest content was found in the classically extruded sample with the addition of 9% of camelina press cake (580 ppb). In all samples, the acrylamide content was below the limit of detection, indicating that safe products were obtained. This research shows potential for the implementation of supercritical CO2 extrusion in the production of safe, nutritionally improved snack products. Future research might bring about the design of cost-effective processes applicable in the industry.


Subject(s)
Hot Temperature , Snacks , Carbon Dioxide , Antioxidants , Polyphenols , Acrylamides
2.
Foods ; 11(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36360034

ABSTRACT

Bread is a staple food and can be a potential product to be enriched with various deficient nutrients. The objective of the study was to characterize the nutritional properties of toasted bread enriched with 10% and 20% of kale and wholemeal bread with 20% and 40% of spinach. The supplementation increased the phenolic content up to 2−3 times in the bread with the addition of 20% spinach and 40% kale. The highest antioxidant properties were noticed in extracts of bread with 20% kale. The in vitro digestion released the hydrophilic and lipophilic antioxidative compounds, leading to higher bioaccessibility of the breads enriched with these selected green vegetables. Even more than a 2-fold increase in folate content was observed in breads with the greatest addition of kale (20%) and spinach (40%), from 18.1 to 45.3 µg/100 g and from 37.2 to 83.2 µg/100 g, respectively, compared to the non-enriched breads. Breads with spinach showed significantly (P < 0.05) higher contents of all of the tested minerals, Cu, Mn, Fe, Zn, Mg, Ca, Na, K, and P, whereas kale enriched breads showed most of them. The results suggest that the addition of fresh green vegetables can enhance the daily supply of micronutrients and significantly increase the bioavailability of bioactive compounds with high antioxidant status.

3.
Molecules ; 25(22)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238393

ABSTRACT

Chocolate is considered as both caloric and functional food. Its nutritional properties may be improved by addition of fiber; however, this may reduce polyphenols content. The aim of this research was to determine the influence of cocoa shell addition (as a source of fiber) and its combination with different ingredients (cocoa butter equivalents (CBE), emulsifiers, dairy ingredients) on polyphenols of dark and milk chocolates. Total polyphenol (TPC) and total flavonoid (TFC) contents were determined spectrophotometrically, identification and quantification of individual compounds by high pressure liquid chromatography and antioxidant capacity by ferric reducing antioxidant power (FRAP) assay. Results showed that even though addition of cocoa shell to chocolate results in reduced contents of TPC, TFC, and individual compounds, it is not significant compared to ones reported by other authors for commercial chocolates. Other ingredients influence determined values for all investigated parameters; however, additional research is needed to reveal exact mechanisms and implications.


Subject(s)
Cacao/chemistry , Chocolate/analysis , Phytochemicals/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Chromatography, High Pressure Liquid , Flavonoids/analysis , Phytochemicals/analysis , Phytochemicals/pharmacology , Polyphenols/analysis
4.
Foods ; 9(6)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575607

ABSTRACT

Cocoa shell is a by-product of the chocolate industry that is rich in dietary fiber and bioactive components. In this research, the influence of high voltage electric discharge (HVED) treatment on chemical and physical characteristics of the cocoa shell, i.e., the effects of applied time and frequencies on grinding ability, water binding capacity (WBC), dietary fibers and tannin content was investigated. HVED had a significant influence on the chemical and physical properties of cocoa shell, all of which could be linked to changes in fiber properties. Along with the fiber content, grinding ability and water binding capacity were increased. These properties have already been linked to fiber content and soluble/insoluble fiber ratio. However, this research implies that change in fiber properties could be linked to tannin formation via complexation of other polyphenolic components. Additional research is needed to verify this effect and to establish mechanisms of tannin formation induced by HVED and its influence on fiber quantification.

5.
Molecules ; 24(17)2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31480281

ABSTRACT

Chocolate production is a complex process during which numerous chemical reactions occur. The most important processes, involving most of the reactions important for development of the proper chocolate flavor, are fermentation, drying and roasting of cocoa bean, and chocolate conching. During fermentation, formation of important precursors occurs, which are essential for further chemical reactions in the following processes of chocolate production. Roasting is one of the most important processes due to the occurrence of Maillard's reactions, during which aroma compounds are formed. In this paper, we have reviewed the most important chemical reactions that occur with proteins, carbohydrates, lipids, and polyphenols. Additionally, we present other components that may be naturally present or form during the production process, such as methylxanthines, aldehydes, esters, ketones, pyrazines, acids, and alcohols.


Subject(s)
Cacao/chemistry , Chocolate/analysis , Carbohydrates/chemistry , Fermentation , Lipids/chemistry , Plant Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...